C avantor"

Chromatography Solutions
Application note \#3120

300 Pesticides by LC-MS/MS

Avantor ${ }^{\circledR}$ ACE ${ }^{\circledR}$

Method Details

CONDITIONS

Column:
Dimensions:
Mobile Phases:

Gradient:

Flow Rate:
Injection:
Temperature:
Detection:

Sample:

Avantor® ACE ${ }^{\circledR}$ UltraCore 2.5 SuperC18
$100 \times 2.1 \mathrm{~mm}$
A: 5 mM ammonium formate in $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(9: 1 \mathrm{v} / \mathrm{v})$
B: 5 mM ammonium formate in $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(1: 9 \mathrm{v} / \mathrm{v})$

Time (mins)	\% B
$\mathbf{0 . 0}$	30
$\mathbf{0 . 5}$	30
$\mathbf{1 5 . 0}$	100
22.0	100
22.1	30
27.0	30

$0.3 \mathrm{~mL} / \mathrm{min}$
$6 \mu \mathrm{~L}$
$24^{\circ} \mathrm{C}$
AB SCIEX 4000 QTRAP
TurbolonSpray ESI positive mode
Capillary voltage: 5000 V
Heater gas temperature: $450^{\circ} \mathrm{C}$
Sample prepared using QuEChERs methodology.
Method validated using cucumber matrix spiked at $0.01 \mathrm{mg} / \mathrm{kg}$.
265 analytes successfully validated (analytes in blue).

ORDERING TABLE

Product	Details	Size	Part Number
Avantor ${ }^{\text {ACE }}$ UltraCore 2.5 SuperC18	HPLC Column	$100 \times 2.1 \mathrm{~mm}$	CORE-25A-1002U

Reproduced with permission of National Food Chain Safety Office, Directorate of Plant Protection, Soil Conservation and Agri-Environment, Hungary

ANALYTES

Analyte	$\mathrm{t}_{\mathrm{R}} / \mathrm{mins}$	MRM Transitions (m/z)
3-Hydroxycarbofuran	3.5	$238.1 \rightarrow 163.1,238.1 \rightarrow 181.1$
Acephate.	1.0	$184.1 \rightarrow 142.9,184.1 \rightarrow 124.8$
Acetamiprid	3.6	$223.2 \rightarrow$ 126.1, $225.2 \rightarrow 128.1$
Aclonifen	13.9	$265.0 \rightarrow 248.0,267.0 \rightarrow 250.0$
Alachlor	12.9	$270.2 \rightarrow 238.2,270.2 \rightarrow 162.1$
Aldicarb	5.4	$208.0 \rightarrow 89.0,208.0 \rightarrow 116.0$
Aldicarb sulfone	1.2	$240.0 \rightarrow 86.0,223.0 \rightarrow 148.0$
Aldicarb sulfoxide	1.1	$207.0 \rightarrow 132.0,207.2 \rightarrow 88.9$
Ametryn	11.1	$228.2 \rightarrow 186.1,228.2 \rightarrow 68.0$
Aminopyralid	0.8	$207.0 \rightarrow 160.9,207.0 \rightarrow 133.9$
Amitrole	0.8	$85.1 \rightarrow 58.1,85.1 \rightarrow 57.1$
Atrazine	9.3	$216.2 \rightarrow$ 174.0, $218.1 \rightarrow 176.1$
Atrazine-desethyl	4.4	$188.2 \rightarrow 146.0,190.1 \rightarrow 148.0$
Atrazine-desisopropyl	2.4	$174.1 \rightarrow 104.1,174.1 \rightarrow 132.1$
Avermectin B1a	18.2	$876.5 \rightarrow 553.0,876.5 \rightarrow 291.0$
Avermectin B1b	19.1	$890.5 \rightarrow 305.0,890.5 \rightarrow 567.0$
Azamethiphos	6.9	$325.0 \rightarrow 183.0,325.0 \rightarrow 138.9$
Azinphos-ethyl	13.0	$346.0 \rightarrow 132.1,346.0 \rightarrow 160.1$
Azinphos-methyl	10.9	$318.1 \rightarrow 132.1,318.1 \rightarrow 260.8$
Aziprotryne	11.8	$226.0 \rightarrow 156.0,226.0 \rightarrow 125.0$
Azoxystrobin	11.4	$404.2 \rightarrow 372.3,404.2 \rightarrow 344.1$
Benalaxyl	14.0	$326.2 \rightarrow 148.1,326.2 \rightarrow 294.1$
Benfuracarb	15.7	$411.2 \rightarrow 252.1,411.2 \rightarrow 195.1$
Benthiavalicarb-isopropyl	12.0	$382.3 \rightarrow 116.0,382.3 \rightarrow 197.0$
Bifenazate	12.5	$301.2 \rightarrow 198.1,301.2 \rightarrow 170.2$
Bifenox	14.9	$359.0 \rightarrow 342.0,359.0 \rightarrow 310.0$
Bifenthrin	21.0	$440.0 \rightarrow 181.1,440.0 \rightarrow 166.1$
Bitertanol	14.6	$338.2 \rightarrow 269.0,338.2 \rightarrow 99.1$
Bixafen	13.6	$414.0 \rightarrow 393.9,416.1 \rightarrow 395.9$
Boscalid	11.7	$343.1 \rightarrow 306.8,343.1 \rightarrow 139.9$
Bromfenvinfos-ethyl	14.3	$405.0 \rightarrow 155.0,403.0 \rightarrow 155.0$
Bromuconazole A	12.2	$378.0 \rightarrow 159.1,378.0 \rightarrow 161.0$

Analyte	$\mathrm{t}_{\mathrm{R}} / \mathrm{mins}$	MRM Transitions (m / z)
Bromuconazole B	13.5	$378.1 \rightarrow 159.1,378.1 \rightarrow 161.0$
Bupirimate	13.5	$317.2 \rightarrow$ 166.2, $317.2 \rightarrow 107.9$
Buprofezin	16.1	$306.3 \rightarrow 201.1,306.3 \rightarrow 116.1$
Cadusafos	14.8	$271.1 \rightarrow$ 158.9, $271.1 \rightarrow 214.9$
Carbaryl	8.3	$202.2 \rightarrow$ 145.1, $202.2 \rightarrow 127.1$
Carbendazim	4.7	$192.2 \rightarrow 160.1,192.0 \rightarrow 132.0$
Carbofuran	7.4	$222.2 \rightarrow$ 165.1, $222.2 \rightarrow 122.9$
Carbosulfan	19.3	$381.2 \rightarrow 160.1,381.2 \rightarrow 118.1$
Carboxin	8.3	$236.1 \rightarrow 143.1,236.1 \rightarrow 87.0$
Carfentrazone-ethyl	13.8	$412.2 \rightarrow 345.9,412.2 \rightarrow 383.9$
Chlorantraniliprole	10.7	$484.0 \rightarrow 452.9,484.0 \rightarrow 285.9$
Chlorbromuron	11.7	295.1 \rightarrow 205.9, $293.1 \rightarrow 182.0$
Chlorfenvinfos A	14.3	$359.0 \rightarrow 155.0,358.9 \rightarrow 99.0$
Chloridazon	3.7	$222.1 \rightarrow$ 104.0, $222.1 \rightarrow 77.1$
Chlorpyrifos	16.8	$349.9 \rightarrow 198.1,349.9 \rightarrow 115.0$
Chlorpyrifos-methyl	15.2	$322.0 \rightarrow 124.9,324.0 \rightarrow 125.1$
Chlortoluron	9.1	$213.2 \rightarrow 72.0,215.1 \rightarrow 72.1$
Cinidon-ethyl	16.3	$394.0 \rightarrow 348.0,394.0 \rightarrow 366.0$
Clethodim A	12.8	$360.1 \rightarrow 164.1,360.1 \rightarrow 268.1$
Clethodim B	10.2	$360.1 \rightarrow 164.1,360.1 \rightarrow 268.1$
Clofentezine	15.1	$303.1 \rightarrow$ 137.9, $305.1 \rightarrow 102.0$
Clomazone	10.7	$240.1 \rightarrow$ 124.9, $242.2 \rightarrow 127.1$
Cloquintocet-mexyl	16.1	$336.2 \rightarrow 238.0,336.2 \rightarrow 192.1$
Clothianidin	2.9	$250.1 \rightarrow 169.0,250.1 \rightarrow 132.0$
Coumaphos	14.3	$363.0 \rightarrow 227.0,363.0 \rightarrow 211.1$
Cyanazine	6.7	$241.1 \rightarrow 214.1,243.1 \rightarrow 216.1$
Cyazofamid	13.2	$325.2 \rightarrow 107.9,327.2 \rightarrow 107.9$
Cycloate	14.9	$216.2 \rightarrow 83.1,216.2 \rightarrow 154.1$
Cycloxydim A	13.1	$326.3 \rightarrow 280.0,326.3 \rightarrow 180$
Cycloxydim B	8.4	$326.3 \rightarrow 280.0,326.3 \rightarrow 180$
Cymoxanil	4.2	$199.2 \rightarrow 128.0,199.2 \rightarrow 111.1$
Cyproconazole A	12.5	$292.0 \rightarrow 70.0,292.0 \rightarrow 125.0$

Analyte	$\mathrm{t}_{\mathrm{R}} / \mathrm{mins}$	MRM Transitions (m/z)
Cyproconazole B	12.0	$292.0 \rightarrow 70.0,292.0 \rightarrow 125.0$
Cyprodinil A	14.1	$226.2 \rightarrow 93.0,226.2 \rightarrow 77.0$
Demeton-S-methyl	7.7	$231.1 \rightarrow 88.8,231.1 \rightarrow 61.0$
Demeton-S-methyl sulfone	1.6	$263.0 \rightarrow 168.9,263.0 \rightarrow 120.8$
Desmedipham	10.6	$318.1 \rightarrow 182.1,318.1 \rightarrow 136.0$
Desmethyl-pirimicarb	5.8	$225.2 \rightarrow 72.0,225.2 \rightarrow 168.1$
Diafenthiuron	17.4	$385.2 \rightarrow 329.2,385.2 \rightarrow 278.2$
Diazinon	14.2	$305.1 \rightarrow 169.1,305.1 \rightarrow 97.0$
Dichlofluanid	12.8	$333.0 \rightarrow 223.9,333.0 \rightarrow 122.9$
Diclobutrazol A	13.7	$328.0 \rightarrow 70.0,330.0 \rightarrow 70.0$
Dicrotofos	2.1	$238.1 \rightarrow 112.1,238.1 \rightarrow 193.1$
Diethofencarb	11.1	$268.1 \rightarrow 226.1,268.1 \rightarrow 124.0$
Difenoconazole	14.8	$406.1 \rightarrow 251.1,408.2 \rightarrow 253.1$
Diflubenzuron	13.5	$311.0 \rightarrow 158.2,311.0 \rightarrow 141.1$
Diflufenican	15.4	$395.0 \rightarrow 266.0,395.0 \rightarrow 246.0$
Dimethachlor	10.2	$256.2 \rightarrow 224.0,256.2 \rightarrow 148.1$
Dimethenamid	11.3	$276.1 \rightarrow 244.0,278.1 \rightarrow 246.0$
Dimethoate	3.6	$230.1 \rightarrow 198.8,230.1 \rightarrow 124.9$
Dimethomorph	11.7	$388.1 \rightarrow 301.0,388.1 \rightarrow 165.1$
Dimoxystrobin	13.7	$327.1 \rightarrow 205.0,327.1 \rightarrow 116.0$
Diniconazole	14.8	$326.0 \rightarrow 70.0,328.0 \rightarrow 70.0$
Disulfoton	15.0	$275.1 \rightarrow 89.0,275.1 \rightarrow 61.0$
Disulfoton sulfone	9.6	$307.1 \rightarrow$ 153.0, $307.1 \rightarrow 171.0$
Disulfoton sulfoxide	9.2	$291.1 \rightarrow 212.9,291.1 \rightarrow 185.0$
Ditalimfos	13.1	$300.1 \rightarrow 148.0,300.1 \rightarrow 130.0$
Diuron	10.0	$233.1 \rightarrow 71.9,235.1 \rightarrow 72.0$
DMST	8.0	$215.2 \rightarrow 106.0,215.2 \rightarrow 78.9$
Dodine	13.6	$228.3 \rightarrow 57.0,228.3 \rightarrow 60.1$
Epoxiconazole	12.9	$330.1 \rightarrow$ 120.9, $330.1 \rightarrow 75.2$
Ethion	16.5	$385.0 \rightarrow 199.0,385.0 \rightarrow 143.0$
Ethirimol	9.7	$210.3 \rightarrow 140.1,210.3 \rightarrow 98.0$
Ethofumesate	11.3	$287.1 \rightarrow 121.0,287.1 \rightarrow 259.0$

Analyte	$\mathrm{t}_{\mathrm{R}} / \mathrm{mins}$	MRM Transitions (m/z)
Ethoprofos	12.7	$243.0 \rightarrow 131.0,243.0 \rightarrow 97.0$
Ethoxyquin A	12.9	$218.2 \rightarrow 148.0,218.2 \rightarrow 174.1$
Ethoxyquin B	10.7	$218.2 \rightarrow 148.0,218.2 \rightarrow 174.1$
Etofenprox	20.6	$394.0 \rightarrow 177.0,394.0 \rightarrow 359.0$
Etrimfos	14.2	$293.1 \rightarrow 125.0,293.1 \rightarrow 265.1$
Famoxadone NH_{4}^{+}	14.4	$392.0 \rightarrow 331.0,392.0 \rightarrow 238.0$
Fenamidone	11.5	$312.1 \rightarrow 92.1,312.1 \rightarrow 236.1$
Fenamifos	13.4	$304.0 \rightarrow 217.0,304.0 \rightarrow 202.0$
Fenamifos sulfone	8.4	$336.0 \rightarrow 308.0,336.0 \rightarrow 266.0$
Fenamifos sulfoxide	7.9	$320.0 \rightarrow 171.0,320.0 \rightarrow 233.0$
Fenarimol	12.7	$331.2 \rightarrow 268.0,331.2 \rightarrow 139.0$
Fenazaquin	18.0	$307.1 \rightarrow 161.1,307.1 \rightarrow 147.0$
Fenbuconazole	13.2	$337.0 \rightarrow 124.9,337.0 \rightarrow 70.0$
Fenbutatin oxide	22.9	$519.3 \rightarrow 463.3,519.3 \rightarrow 197.0$
Fenhexamid	12.6	$302.2 \rightarrow 96.9,304.2 \rightarrow 97.0$
Fenoxycarb	13.6	$302.2 \rightarrow 87.9,302.2 \rightarrow 116.0$
Fenpropathrin	17.3	$367.0 \rightarrow 125.0,350.0 \rightarrow 125.0$
Fenpropidin	10.8	$274.0 \rightarrow 147.0,274.0 \rightarrow 117.0$
Fenpropimorph	18.7	$304.0 \rightarrow 147.0,304.0 \rightarrow 117.0$
Fenpyroximate	17.4	$422.2 \rightarrow 366.1,422.2 \rightarrow 135.1$
Fensulfothion	10.0	$309.1 \rightarrow 280.8,309.1 \rightarrow 252.9$
Fensulfothion sulfone	10.4	$325.1 \rightarrow 268.9,325.1 \rightarrow 297.0$
Fenthion sulfone	9.0	$311.1 \rightarrow 125.0,311.1 \rightarrow 278.8$
Fenthion sulfoxide	8.4	$295.1 \rightarrow 279.7,295.1 \rightarrow 108.9$
Flonicamid	1.7	$230.0 \rightarrow 203.0,230.0 \rightarrow 148.0$
Flubendiamide NH_{4}^{+}	13.8	$700.0 \rightarrow 407.9,682.9 \rightarrow 407.9$
Fludioxonil NH_{4}^{+}	11.8	$266.0 \rightarrow 229.0,266.0 \rightarrow 227.1$
Flufenacet	12.8	$364.1 \rightarrow 194.1,364.1 \rightarrow 152.2$
Flufenoxuron	17.1	$489.0 \rightarrow 158.0,489.0 \rightarrow 141.1$
Flumethrin NH_{4}^{+}	20.2	$527.2 \rightarrow 510.0,527.2 \rightarrow 267.0$
Flumetsulam	2.0	$326.2 \rightarrow 128.8,326.2 \rightarrow 128.3$
Flumioxazin	10.7	$355.0 \rightarrow 327.0,355.0 \rightarrow 299.0$

Analyte	$\mathrm{t}_{\mathrm{R}} / \mathrm{mins}$	MRM Transitions (m / z)
Fluometuron	8.9	$233.0 \rightarrow 72.0,233.0 \rightarrow 160.0$
Fluopicolide	11.9	$383.0 \rightarrow 173.0,385.1 \rightarrow 174.9$
Fluopiram	12.5	$397.0 \rightarrow 173.0,397.0 \rightarrow 208.0$
Fluoxastrobin	12.8	$459.1 \rightarrow 427.1,459.1 \rightarrow 188.1$
Fluquinconazole	12.6	$376.1 \rightarrow 307.1,376.1 \rightarrow 349.1$
Flusilazole	13.3	$316.2 \rightarrow 247.0,316.2 \rightarrow 165.1$
Flutolanil	12.0	$324.0 \rightarrow 262.0,324.0 \rightarrow 242.0$
Flutriafol	9.7	$302.1 \rightarrow 70.1,302.1 \rightarrow 123.0$
Fomesafen (NH4-Adduct)	11.3	$456.1 \rightarrow 344.0,458.1 \rightarrow 346.0$
Fonofos	14.3	$247.0 \rightarrow$ 109.0, $247.0 \rightarrow 127.0$
Fosthiazate	8.9	$284.1 \rightarrow 227.9,284.1 \rightarrow 104.0$
Fuberidazole	6.9	$185.0 \rightarrow 157.0,185.0 \rightarrow 65.0$
Furathiocarb	15.9	$383.1 \rightarrow 195.0,383.1 \rightarrow 252.1$
Heptenofos	10.1	$251.0 \rightarrow 127.0,251.0 \rightarrow 124.8$
Hexaconazole	14.3	$314.0 \rightarrow 70.0,316.0 \rightarrow 70.0$
Hexaflumuron	15.5	$461.1 \rightarrow$ 158.2, $461.1 \rightarrow 141.1$
Hexazinone	7.3	$253.2 \rightarrow 71.0,253.2 \rightarrow 85.0$
Hexythiazox	16.6	$353.0 \rightarrow 168.0,353.0 \rightarrow 228.0$
Imazalil	13.6	$297.2 \rightarrow 159.1,299.1 \rightarrow 160.9$
Imidacloprid	2.7	$256.1 \rightarrow 209.0,256.1 \rightarrow 175.0$
Indoxacarb	15.2	$528.1 \rightarrow 248.9,528.1 \rightarrow 292.9$
Ipconazole	15.3	$334.2 \rightarrow 70.0,334.2 \rightarrow 125.0$
Iprodione	13.3	$332.1 \rightarrow 246.9,330.0 \rightarrow 245.0$
Iprovalicarb	12.6	$321.3 \rightarrow 119.0,321.3 \rightarrow 203.1$
Isofenfos	14.7	$346.1 \rightarrow 245.1,346.1 \rightarrow 217.1$
Isofenfos-methyl	13.8	$332.1 \rightarrow 231.0,332.1 \rightarrow 273.0$
Isoprocarb	9.4	$194.1 \rightarrow 95.0,194.1 \rightarrow 137.0$
Isoprothiolane	12.1	$291.1 \rightarrow 231.0,291.1 \rightarrow 189.0$
Isoproturon	9.7	$207.2 \rightarrow 72.0,207.2 \rightarrow 165.2$
Isoxadifen-ethyl	13.9	$313.2 \rightarrow 296.1,313.2 \rightarrow 263.0$
Isoxaflutole	10.0	$360.1 \rightarrow 251.1,377.0 \rightarrow 251.0$
Kresoxim-methyl	13.9	$314.0 \rightarrow$ 116.0, 314.0 ${ }^{\text {l }} 131.1$

Analyte	$\mathrm{t}_{\mathrm{R}} / \mathrm{mins}$	MRM Transitions (m / z)
Lenacil	9.5	$235.3 \rightarrow 153.2$, $235.3 \rightarrow 136.2$
Linuron	11.3	$249.0 \rightarrow 159.9,249.0 \rightarrow 182.0$
Lufenuron	16.4	$511.0 \rightarrow 158.0,511.0 \rightarrow 141.0$
Malaoxon	7.9	$315.1 \rightarrow 99.1,315.1 \rightarrow 127.1$
Mandipropamid	11.9	$412.1 \rightarrow 328.1,412.2 \rightarrow 125.0$
Mecarbam	13.0	$330.1 \rightarrow 227.0,330.1 \rightarrow 198.9$
Mepanipyrim	12.9	$224.2 \rightarrow 106.0,224.2 \rightarrow 77.1$
Mepronil	12.1	$270.1 \rightarrow 119.0,270.1 \rightarrow 228.1$
Mesotrione	1.2	$340.0 \rightarrow 228.0,357.1 \rightarrow 227.9$
Metaflumizone	16.1	$507.1 \rightarrow 178.1,507.1 \rightarrow 287.1$
Metalaxyl	9.8	$280.1 \rightarrow 220.2,280.1 \rightarrow 192.2$
Metamitron	3.4	$203.1 \rightarrow$ 175.0, $203.1 \rightarrow 104.2$
Metazachlor	9.6	$278.1 \rightarrow 209.9,278.1 \rightarrow 134.2$
Metconazole	14.4	$320.1 \rightarrow 70.0,320.1 \rightarrow 125.0$
Methacrifos	10.7	$241.0 \rightarrow 208.9,241.0 \rightarrow 124.9$
Methamidofos	0.9	$142.0 \rightarrow 93.9,142.0 \rightarrow 112.1$
Methiocarb	11.4	$226.2 \rightarrow$ 169.1, $226.2 \rightarrow 121.2$
Methiocarb sulfone	4.1	$258.1 \rightarrow 122.0,258.1 \rightarrow 200.9$
Methiocarb sulfoxide	3.0	$242.1 \rightarrow$ 185.0, $242.1 \rightarrow 122.1$
Methomyl	1.6	$163.0 \rightarrow 106.0,163.0 \rightarrow 88.0$
Methoxyfenozide	12.2	$369.1 \rightarrow 149.1,369.1 \rightarrow 313.2$
Metobromuron	9.4	$259.0 \rightarrow 170.0,259.0 \rightarrow 148.1$
Metolachlor	13.0	$284.1 \rightarrow 252.0,286.1 \rightarrow 254.0$
Metoxuron	5.7	$229.1 \rightarrow 72.0,231.1 \rightarrow 71.9$
Metrafenone	14.8	$409.2 \rightarrow 209.1,411.2 \rightarrow 209.1$
Metribuzin	7.1	$215.2 \rightarrow 187.1,215.2 \rightarrow 84.1$
Mevinfos A	4.9	$225.0 \rightarrow$ 193.0, $225.0 \rightarrow 127.0$
Mevinfos B	3.4	$225.0 \rightarrow$ 193.0, $225.0 \rightarrow 127.0$
Molinate	12.0	$188.2 \rightarrow 126.2,188.2 \rightarrow 55.1$
Monocrotofos	1.8	$224.2 \rightarrow$ 192.9, $224.2 \rightarrow 126.9$
Monolinuron	8.7	$215.1 \rightarrow$ 126.1, $215.1 \rightarrow 148.1$
Myclobutanil	12.2	$289.2 \rightarrow 70.0,289.2 \rightarrow 125.0$

Analyte	$\mathrm{t}_{\mathrm{R}} /$ mins	MRM Transitions (m / z)
Napropamide	12.9	$272.2 \rightarrow$ 129.1, $272.2 \rightarrow 171.1$
Nitenpyram	1.3	$271.1 \rightarrow$ 189.2, $271.1 \rightarrow 126.0$
Novaluron	15.6	$493.0 \rightarrow 158.1,493.0 \rightarrow 141.1$
Nuarimol	11.2	$315.0 \rightarrow 252.0,315.0 \rightarrow 81.0$
Ofurace	7.6	$282.0 \rightarrow 160.1,282.0 \rightarrow 236.3$
Omethoate	1.0	$214.0 \rightarrow 183.0,214.0 \rightarrow 125.0$
Oxadiazon	16.2	$345.0 \rightarrow 220.0,345.0 \rightarrow 303.0$
Oxadixyl	6.4	$279.0 \rightarrow 219.0,279.0 \rightarrow 133.0$
Oxamyl NH4+	1.2	$237.1 \rightarrow 72.0,220.2 \rightarrow 72.0$
Oxycarboxin	4.5	$268.1 \rightarrow 174.9,268.1 \rightarrow 147.0$
Oxydemeton-methyl	1.4	$247.0 \rightarrow 108.9,247.0 \rightarrow 168.9$
Paclobutrazol	11.8	$294.0 \rightarrow 70.0,294.0 \rightarrow 125.0$
Paraoxon	9.4	$275.9 \rightarrow 219.9,275.9 \rightarrow 248.0$
Paraoxon-methyl	6.1	$248.1 \rightarrow 202.1,248.1 \rightarrow 90.0$
Parathion	13.8	$292.0 \rightarrow 236.0,292.0 \rightarrow 264.1$
Penconazole	13.7	$248.1 \rightarrow 70.0,284.1 \rightarrow 159.0$
Pencycuron	14.8	$329.3 \rightarrow 125.1,331.3 \rightarrow 127.0$
Pendimethalin	16.9	$282.2 \rightarrow 212.1,282.2 \rightarrow 194.1$
Pethoxamid	12.7	$296.2 \rightarrow 131.0,296.2 \rightarrow 250.0$
Phenmedipham	10.8	$301.2 \rightarrow 168.0,301.2 \rightarrow 136.0$
Phenthoate	13.9	$321.0 \rightarrow 247.0,321.0 \rightarrow 275.1$
Phorate sulfone	9.6	$293.0 \rightarrow$ 170.8, $293.0 \rightarrow 96.7$
Phorate sulfoxide	9.2	$277.0 \rightarrow$ 199.0, $277.0 \rightarrow 171.0$
Phosalone	14.6	$368.0 \rightarrow 182.0,369.9 \rightarrow 183.9$
Phosphamidon	6.4	$300.2 \rightarrow 127.1,300.2 \rightarrow 226.8$
Phoxim	14.7	$299.2 \rightarrow 129.2,299.2 \rightarrow 77.1$
Picloram	1.2	$243.0 \rightarrow 224.9,241.0 \rightarrow 222.9$
Picolinafen	16.2	$377.1 \rightarrow 238.0,377.1 \rightarrow 359.0$
Picoxystrobin	13.6	$368.0 \rightarrow 205.0,368.0 \rightarrow 145.0$
Piperonyl butoxide	16.2	$356.2 \rightarrow 177.2,356.2 \rightarrow 119.0$
Pirimicarb	9.0	$239.2 \rightarrow 72.0,239.2 \rightarrow 182.3$
Pirimiphos-ethyl	16.3	$334.1 \rightarrow 198.0,334.1 \rightarrow 182.3$

Analyte	$\mathrm{t}_{\mathrm{R}} / \mathrm{mins}$	MRM Transitions (m/z)
Pirimiphos-methyl	14.8	$306.2 \rightarrow 108.0,306.2 \rightarrow 164.3$
Prochloraz	14.4	$376.0 \rightarrow 308.0,376.0 \rightarrow 70.0$
Profenofos	15.6	$375.0 \rightarrow 304.9,373.0 \rightarrow 302.9$
Prometryn	12.6	$242.2 \rightarrow 158.1,242.2 \rightarrow 200.0$
Propachlor	9.6	$212.0 \rightarrow$ 170.0, $212.0 \rightarrow 94.1$
Propamocarb	1.1	$189.0 \rightarrow 102.0,189.0 \rightarrow 144.0$
Propaquizafop	16.0	$444.2 \rightarrow$ 100.0, $444.2 \rightarrow 371.0$
Propargite NH4+	17.0	$368.2 \rightarrow 231.1,368.2 \rightarrow 175.0$
Propazine	11.0	$230.2 \rightarrow 188.1,230.2 \rightarrow 146.1$
Propetamfos	12.4	$282.1 \rightarrow 138.0,282.1 \rightarrow 156.1$
Propham	9.4	$180.1 \rightarrow$ 138.1, $180.1 \rightarrow 120.1$
Propiconazole	14.0	$342.1 \rightarrow 159.0,342.1 \rightarrow 69.0$
Propisochlor	14.0	$284.2 \rightarrow 224.0,284.2 \rightarrow 148.0$
Propoxur	7.2	$210.1 \rightarrow 111.1,210.1 \rightarrow 168.0$
Propyzamide	11.9	$256.1 \rightarrow 190.0,256.1 \rightarrow 173.0$
Proquinazid	17.7	$373.2 \rightarrow 330.9,373.2 \rightarrow 289.0$
Prosulfocarb	15.5	$252.2 \rightarrow 91.0,252.2 \rightarrow 128.1$
Prosulfuron	9.0	$420.1 \rightarrow 141.0,420.1 \rightarrow 167.1$
Prothioconazole	14.1	$344.1 \rightarrow 326.0,346.1 \rightarrow 328.1$
Prothioconazole-desthio	13.0	$312.0 \rightarrow 70.0,312.0 \rightarrow 125.0$
Pymetrozine	1.5	$218.0 \rightarrow 105.0,218.0 \rightarrow 78.0$
Pyraclostrobin	14.5	$388.1 \rightarrow 194.0,388.1 \rightarrow 163.0$
Pyrazophos	14.8	$374.0 \rightarrow 222.0,374.0 \rightarrow 194.0$
Pyridaben	18.0	$365.0 \rightarrow 309.0,365.0 \rightarrow 147.0$
Pyridapenthion	12.4	$341.0 \rightarrow 189.0,341.0 \rightarrow 205.0$
Pyridate	19.1	$379.1 \rightarrow 206.9,379.1 \rightarrow 350.9$
Pyrifenox	13.0	$295.1 \rightarrow 93.0,297.1 \rightarrow 93.0$
Pyrimethanil	11.3	$200.0 \rightarrow 82.0,200.0 \rightarrow 107.0$
Pyriproxyfen	16.7	$322.0 \rightarrow 96.0,322.0 \rightarrow 185.0$
Pyroxsulam	5.6	$435.0 \rightarrow 195.1,435.0 \rightarrow 194.0$
Quinalfos	13.9	$299.0 \rightarrow 271.0,299.0 \rightarrow 243.0$
Quinoclamine	6.8	$208.0 \rightarrow 105.0,208.0 \rightarrow 77.0$

Analyte	$\mathrm{t}_{\mathrm{R}} / \mathrm{mins}$	MRM Transitions (m/z)
Quinoxyfen	16.4	$308.0 \rightarrow 197.0,308.0 \rightarrow 162.0$
Rotenone	13.4	$395.1 \rightarrow 213.1,395.1 \rightarrow 192.0$
Secbumeton	10.6	$226.2 \rightarrow 170.1,226.2 \rightarrow 100.0$
Silthiofam	13.5	$268.0 \rightarrow 252.0,268.0 \rightarrow 73.0$
Simazine	7.2	$202.02 \rightarrow$ 132.1, $202.2 \rightarrow 104.0$
Simetryn	9.4	$214.1 \rightarrow 124.1,214.1 \rightarrow 144.0$
Spinosyn A	17.3	$732.5 \rightarrow 142.0,732.5 \rightarrow 98.0$
Spinosyn D	18.3	$746.5 \rightarrow 142.0,746.5 \rightarrow 98.0$
Spirodiclofen	17.4	$313.1 \rightarrow 295.0,313.1 \rightarrow 213.0$
Spiromesifen	16.8	$371.2 \rightarrow 273.1,371.2 \rightarrow 255.2$
Spirotetramat	12.8	$374.2 \rightarrow 302.2,374.2 \rightarrow 330.2$
Spiroxamine	13.3	$298.3 \rightarrow 100.1,298.3 \rightarrow 144.1$
Sulfotep	14.0	$323.0 \rightarrow 97.0,323.0 \rightarrow 115.0$
Tau-fluvalinate	18.9	$503.0 \rightarrow 208.0,503.0 \rightarrow 181.0$
Tebuconazole	13.9	$308.1 \rightarrow 70.0,308.1 \rightarrow 125.0$
Tebufenozide	13.5	$353.2 \rightarrow 297.2,353.2 \rightarrow 133.0$
Tebufenpyrad	15.9	$334.0 \rightarrow 145.0,334.0 \rightarrow 117.0$
Teflubenzuron	16.3	$381.1 \rightarrow 158.2,381.1 \rightarrow 141.2$
Tembotrione (NH_{4} adduct)	5.9	$458.0 \rightarrow 340.9,458.0 \rightarrow 441.0$
Terbufos	16.1	$289.1 \rightarrow 103.1,289.1 \rightarrow 232.9$
Terbufos sulfone	11.1	$321.1 \rightarrow 171.0,321.1 \rightarrow 115.0$
Terbufos sulfoxide	11.0	$305.1 \rightarrow 187.2,305.1 \rightarrow 131.1$
Terbumeton	11.3	$226.2 \rightarrow 170.1,226.2 \rightarrow 142.0$
Terbuthylazine	11.4	$230.2 \rightarrow 174.0,232.2 \rightarrow 176.0$
Terbutryn	12.9	$242.1 \rightarrow 186.1,242.1 \rightarrow 96.0$

Analyte	$\mathrm{t}_{\mathrm{R}} / \mathrm{mins}$	MRM Transitions (m/z)
Tetrachlorvinfos	13.5	$367.0 \rightarrow 127.0,365.0 \rightarrow 127.0$
Tetraconazole	12.9	$372.0 \rightarrow 159.0,374.0 \rightarrow 161.2$
Thiabendazole	6.2	$202.1 \rightarrow 174.9,202.1 \rightarrow 131.0$
Thiacloprid	4.7	$253.1 \rightarrow 126.1,253.1 \rightarrow 99.1$
Thiencarbazone-methyl	2.3	$391.0 \rightarrow 130.0,391.0 \rightarrow 230.0$
Thiodicarb	9.2	$355.0 \rightarrow 88.0,355.0 \rightarrow 108.0$
Thiophanate-methyl	7.6	$343.0 \rightarrow 151.1,343.0 \rightarrow 311.0$
Thiamethoxam	1.7	$292.0 \rightarrow 211.0,292.0 \rightarrow 181.0$
Tolclophos-methyl	14.9	$301.2 \rightarrow 268.9,303.1 \rightarrow 270.9$
Tolylfluanid	13.9	$347.0 \rightarrow 237.8,347.0 \rightarrow 137.1$
Topramezone	1.6	$364.1 \rightarrow 334.1,364.1 \rightarrow 125.0$
Triadimefon	12.1	$294.2 \rightarrow 197.2,294.2 \rightarrow 225.0$
Triadimenol	12.4	$296.2 \rightarrow 70.0,298.2 \rightarrow 70.0$
Triallate	16.7	$304.1 \rightarrow 142.9,304.1 \rightarrow 86.2$
Triazofos	12.6	$314.0 \rightarrow 162.0,314.2 \rightarrow 119.0$
Trichlorfon	3.4	$257.0 \rightarrow 108.9,257.0 \rightarrow 220.8$
Tricyclazole	5.2	$190.1 \rightarrow 136.1,190.1 \rightarrow 163.0$
Trifloxystrobin	15.3	$409.0 \rightarrow 186.0,409.0 \rightarrow 206.0$
Triflumizole	15.3	$346.0 \rightarrow 278.0,346.0 \rightarrow 73.0$
Triflumuron	14.6	$359.1 \rightarrow 156.2,359.1 \rightarrow 139.0$
Triforin	10.6	$435.0 \rightarrow 390.0,437.0 \rightarrow 392.0$
Triticonazole A	12.7	$318.0 \rightarrow 70.0,318.0 \rightarrow 125.0$
Triticonazole B	10.9	$318.0 \rightarrow 70.0,318.0 \rightarrow 125.0$
Vamidothion	3.4	$288.1 \rightarrow 146.0,288.1 \rightarrow 118.0$
Zoxamide	14.2	$336.0 \rightarrow 187.0,338.0 \rightarrow 189.0$

Avantor ${ }^{\circledR}$ ACE ${ }^{\circledR}$

